

Find the value of x in the equation

$$2x^2 - 3x - 5 = 0$$

$$\sim (1 \ 2(1)^2 - 3(1) - 5 = 2 - 3 - 5)$$

$$(C1)$$
 -1 $2(-1)^2 - 3(-1) - 5 = 2 + 3 - 5 = 0$

No solution

Find the value of x in the equation

$$x(x-3) = -7 - 10x$$

$$x(x-$$

B)
$$\frac{-7+\sqrt{77}}{5}$$
 $5^{2}+7x+7=6$

$$\frac{2}{7 + \sqrt{21}} \quad a = 1$$

D)
$$\frac{-7 + \sqrt{21}}{2}$$
 $C = \frac{3}{2}$ $C = \frac{3}{2}$

3

. Which of the following is a solution for the equation $2x^2 - 7|x| + 5 = 0$?

D. -3

Find the value of x in the equation

$$a = 2 2n^{2} + 5n - 9 = 0$$

$$b = 5$$

$$c = -9$$

$$B) \frac{5 + \sqrt{97}}{4}$$

$$-5 + \sqrt{97} - \frac{5 + \sqrt{97}}{4}$$

$$5 + \sqrt{47}$$

$$= -5 + \sqrt{(5)^{2} - 4(2)(-9)}$$

D)
$$\frac{-5+\sqrt{47}}{4}$$

$$= \frac{2(2)}{-5 + \sqrt{25 + 32}}$$

Find the value of x in the equation

$$6v^{2} + 3 = -2v$$

$$b = 2$$

$$(= 3)$$

$$4 + \sqrt{76}$$

$$12$$

$$-4 + \sqrt{76}$$

$$12$$

$$2a$$

$$4 + \sqrt{76}$$

$$12$$

$$2a$$

$$2 + 2\sqrt{19}$$

D) No solution
$$-\frac{2}{12}$$

ex:
$$\chi^{2} - 5\chi + 6 = 0$$

Sum= +5

Prod= 6

ex:
$$x^2 + 6x + 9 = 0$$

Sum = -6
 $9 = 9$

ex:
$$x^{2}-5x+6=0$$

then $x=2.3$
 $5um=5$
 $2,3$
 $9rod=6$

ex:
$$x^2 - 7x + 10 = 0$$

then $x = \frac{2.5}{...}$
 $5um = +7$
 2.5
 2.5

EST Math

Quadratic Part B

The sum of the zeros of $y = x^2 + 6x - 4$ is:

- G) -2
- H) 2

2

The sum of the zeros of $y = \frac{3x^2}{3} - \frac{6x}{3} - \frac{4}{3}$ is:

- A) -6
- B) 6
- x2-2x- 4 C) -2
- D) 2

The Product of the zeros of $y = 4x^2 + 8x - 12$ is:

- A) -3
- B) 3
- C)
- 22+7X-3
- D) -7

The sum of the zeros of $y = x^2 - 7x + 5$ is:

- D) 5

The Product of the zeros of $y = 2x^2 + 6x - 10$ is:

- B) 5 C) -10 -10
- D) 10

5

The sum of the zeros of $y = 5x^2 + 6x - 7$ is:

- A) 6/5
- B) -6/5
- Sum = -6
- 7/5
- D) -7/5
- Prod = -3

Quadratic Part C

(x-a) (x+a) -s roots, Sels, x-int

b2-4ac Tero 1 sal.

1

$$y = x^2 - 6x - 16$$

The graph of the equation above in the xy-plane is a parabola. Which of the following equivalent forms of the equation includes the x- and y-coordinates of the vertex as constants?

A.
$$y = (x-3)^2 - 25$$

B.
$$y = x(x-6)-16$$

C.
$$y = x^2$$
 2(3x+8)

D.
$$y + 16 = x(x - 6)$$

2

$$y = 7x^2 - 28x + 21$$

The graph of the equation above is a parabola in the xy-plane. In which of the following equivalent forms of the equation do the x-intercepts of the parabola appear as constants or coefficients?

A)
$$y = 7(x^2 - 4x) + 21$$

B) $y = 7x(x - 4) + 21$

B)
$$y = 7x(x-4) + 2$$

C)
$$y = 7(x-2)^2 - 7$$

D)
$$y = 7(x-1)(x-3)$$

$$x^{2} - 2mx = -9$$

 $\alpha = 1$ What is the minimum positive integer value b--2 of m that allows the above equation to have two real solutions?

C=9

$$b^{2}-490$$
 (m) 3
 $(-2m)^{2}-4(1)(9)$ 70
 $4m^{2}-36$ 70
 $4m^{2}>\frac{36}{4}$
 $m^{2}>9$

$$2x^2 - 4x = t$$

In the equation above, t is a constant. If the equation has no real solutions, which of the following could be the value of t?

D) 3

A <-21

3

$$m x^2 + 4x + 2 = 0$$

a - m

In the equation above, What is the positive value of m if the equation has one real " C=2 solution?

4

$$2x^2 + bx + 8 = 0$$

In the equation above, b is a constant. For what positive value of b does the equation have exactly one real solution?

5

$$x^{2}$$
 -ax+6=0

In the equation above, What is the minimum positive value of a if the equation has two real solutions?

6

$$x^2 - ax + 6 = 0$$

In the equation above, What is the minimum positive value of a if the equation has two real solutions?

