

Quadratic Equations


2. Which of the following is the ordinate of the vertex of the function $f(x) = 2x^2$ -

$$8x + 3?$$
 $a = 2$
 $b = -8$
 $a = -8$
 a

$$\begin{array}{c}
X + 3 ? \\
X = \frac{b}{2a} \\
X =$$

$$x^2 - 2x - 1 = 0$$

The equation above has solutions $x = n + \sqrt{k}$ and $x = n + \sqrt{k}$, where n and k are positive integers. What is the value of n + k?

The solutions to the quadratic equation above are a and b. What is the value of a + b?

A)
$$-\frac{5}{3}$$
 $-\frac{5}{3}$ $-\frac{7}{3}$ $-\frac{7}{3}$ $-\frac{7}{3}$ $-\frac{7}{3}$ $-\frac{7}{3}$

$$x^2 - 14x + 40 = 2x + 1$$

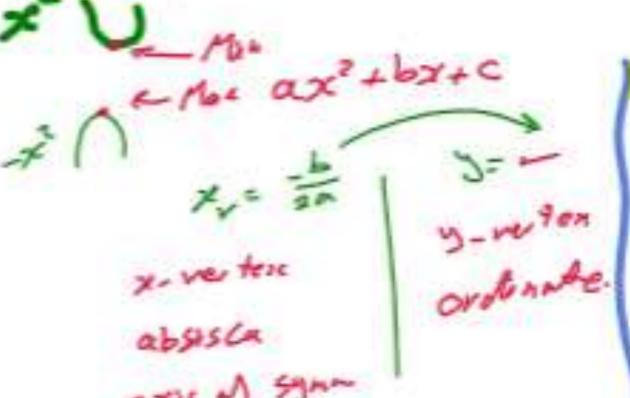
What is the sum of the solutions to the given 2-14x-2x+40-1=c equation?

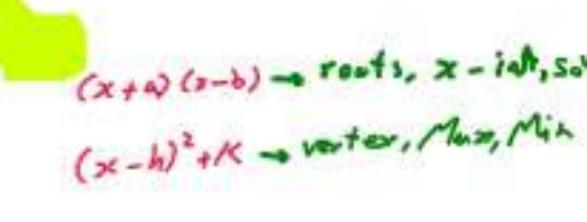
A)
$$-16$$

B) -14 $2 - 16 \times +39 = 0$

$$2m^2 - 16m + 8 = 0$$
?

$$y = x^2 - 6x + 8$$


The equation above represents a parabola in the xy-plane. Which of the following equivalent forms of the equation displays the x-intercepts of the parabola as constants or coefficients?


A)
$$y - 8 = x^2 - 6x$$

B)
$$y+1=(x-3)^2$$

C)
$$y = x(x-6) + 8$$

D)
$$y = (x-2)(x-4)$$

- 54m x + Road = 0

Complex

11. If $i = \sqrt{-1}$ which of the following is equivalent to

$$\frac{-3}{2-i} ? \times \frac{2+i}{2+i} = \frac{-3(2+i)}{4-i3(-1)}$$

A)
$$\frac{3}{5}(2+i)$$
 $\frac{-3(2+i)}{4+1}$

$$\frac{B}{5} \frac{3}{5} (2+i) \qquad \frac{-3}{5} (2+i)$$

$$C)^{-2-i}$$
 $(2)^{-2+i}$

Which of the following complex numbers is

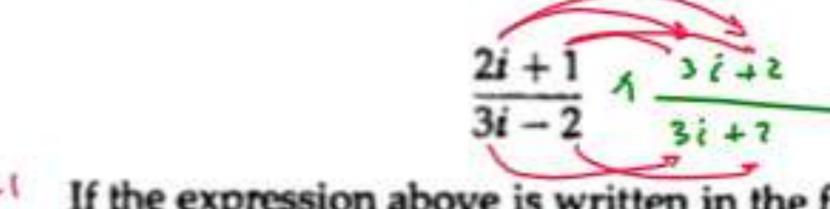
equivalent to

$$\frac{3}{8} - \frac{5i}{2}$$

$$\frac{3}{8} + \frac{5i}{2}$$

$$\frac{3}{8} + \frac{5i}{2}$$

$$\frac{3}{64} - \frac{4i}{2^2}$$


$$\frac{7}{34} - \frac{23i}{34}$$

$$\frac{7}{34} - \frac{23i}{34}$$

$$\frac{7}{34} + \frac{23i}{34}$$

$$\frac{7}{34} + \frac{23i}{34}$$

$$\frac{14 - 48i}{62}$$

If the expression above is written in the form a + bi, where a and b are constants, what is the value of b?

$$\frac{(4-1)}{(3+4i+3i+2)}$$
A) $-\frac{4}{13}$
B) $\frac{4}{13}$

B)
$$\overline{13}$$
C) $-\frac{7}{13}$
 $-\frac{6}{9} - \frac{4}{9}$

D)
$$\frac{7}{13}$$
 $\frac{-4+7i}{-13}i$
 $+\frac{4}{13}i$

In the complex number system, which of

the following is equal to
$$3i(1+i) - l(1-i)^{2}?$$

$$(Note: i = \sqrt{-1})$$

$$A. -3+i \qquad 3i+3i^{2} - (1-2i+i)$$

$$B -3+5i \qquad 3i-3-(1-2i+i)$$

$$C. 3+i \qquad 3i-3-(1-2i+i)$$

$$D. 3+5i \qquad 3i-3+2i$$

$$(a+b)^{2} = a^{2} + 2ab + b^{2}$$

$$(a-b)^{2} = a^{2} - 2ab + b^{2}$$

$$a^{2} - b^{2} = (a-b)(a+b)$$

Circles

In the xy-plane, the graph of

 $\frac{2x^2-6x+2y^2+2y=45}{3}$ is a circle. What is the radius of the circle?

$$x^2 - 10x + y^2 + 6y = 2$$

The graph in the xy-plane of the equation above is a circle. What are the coordinates of the center of the circle?

$$(C)$$
 $(5, -3)$

The graph of $x^2 - 4x + y^2 + 6y - 24 = 0$ in the xy-plane is a circle. What is the radius of the circle?

A)
$$2\sqrt{6}$$

A)
$$2\sqrt{6}$$
 $\chi^2 - 4x + 4y^2 + 6y = 24$

B)
$$\sqrt{11}$$
C) $\sqrt{37}$
 $V = \sqrt{\left(-\frac{4}{2}\right)^2 + \left(\frac{6}{2}\right)^2 + 24}$

arch 1x-h)2+(y-K)2= x2

Center (h1K)

$$2c^{2} + ax + y^{2} + by = C$$

$$C\left(\frac{a}{-2}, \frac{b}{-2}\right)$$

$$C\left(\frac{a}{-2}, \frac{b}{-2}\right)$$

$$C\left(\frac{a}{-2}, \frac{b}{-2}\right)$$

Which of the following equations describes a circle with radius 10 that passes through the origin when graphed in the xy-plane?

$$(x-5)^2 + (y+5)^2 = 10$$

$$(6-5)^{2} + (6+5)^{2} = 50$$

$$(x-5)^{2} + (y+5)^{2} = 100$$

$$(0-10)^{2} + (0-10)^{2} = 200$$

$$(x-10)^{2} + (y-10)^{2} = 100$$

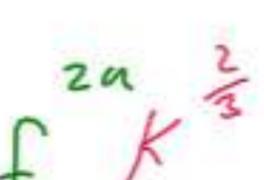
$$(D) (x-5\sqrt{2})^2 + (y+5\sqrt{2})^2 = 100$$

$$x^2 + y^2 + 4x - 2y = -1$$

The equation of a circle in the xy-plane is shown above. What is the radius of the circle?

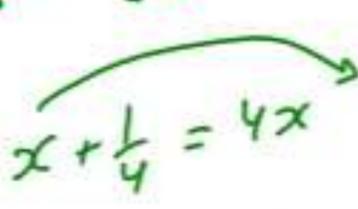
$$x^2 + 20x + y^2 + 16y = -20$$

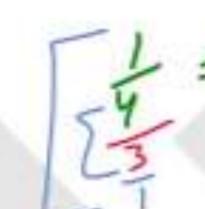
The equation above defines a circle in the xy-plane. What are the coordinates of the center of the circle?


Powers

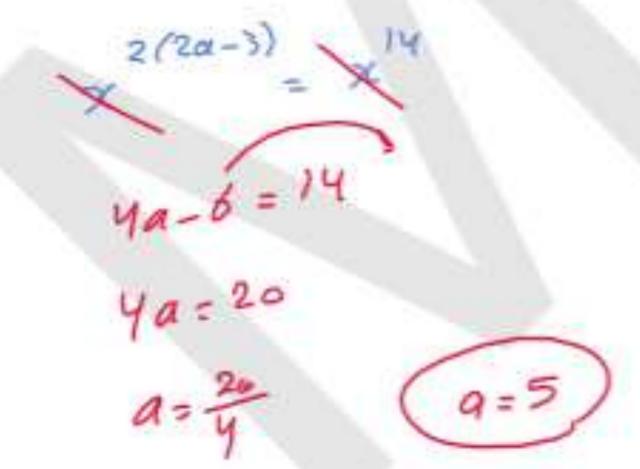
Which of the following is an equivalent form of $\sqrt[3]{f^{6a}k^2}$, where f > 0 and k > 0?

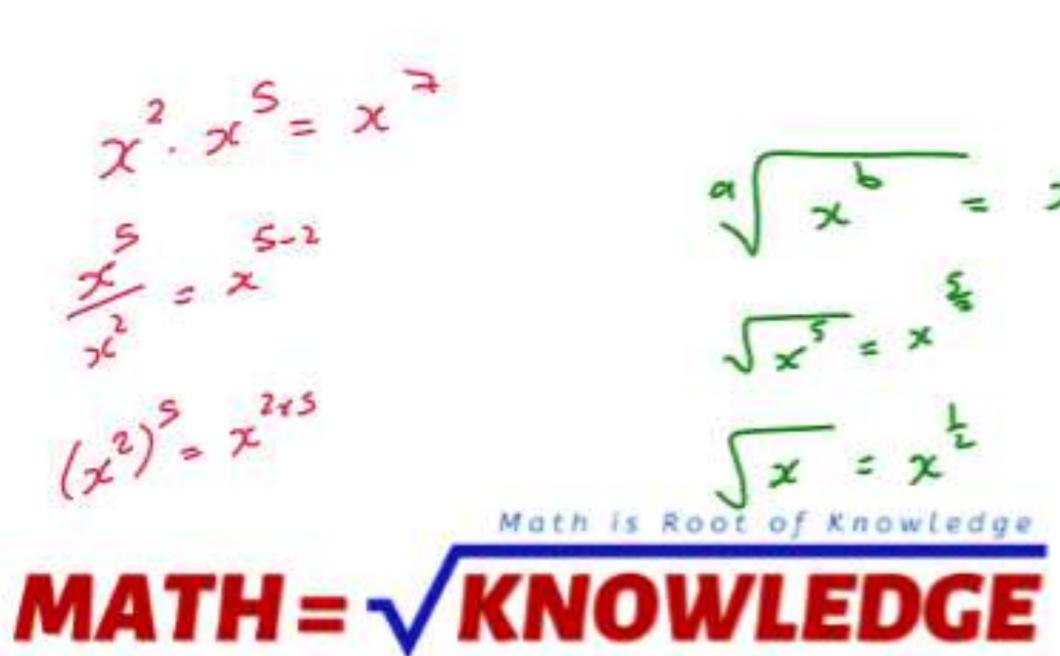
A)
$$f^{\frac{1}{3a}}k^{-1}$$
B) $f^{\frac{1}{2a}}k^{\frac{3}{2}}$


B)
$$f^{\frac{1}{2a}}k^{\frac{3}{2}}$$

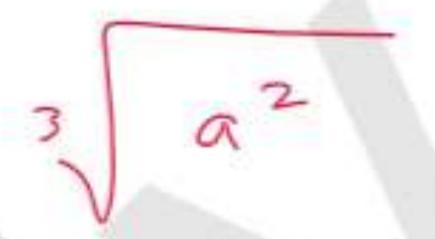


C)
$$f^{3a}k^{-1}$$


If 3^x , $\sqrt[4]{3} = 9^{2x}$, then x =



$$\frac{1\times1}{4\times3}=\frac{1}{72}$$

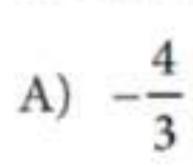

If $(x^{2a-3})^2 = x^{14}$, then what is the value of a?

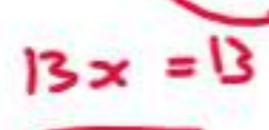
Which of the following is equal to $a^{\frac{3}{3}}$, for all values

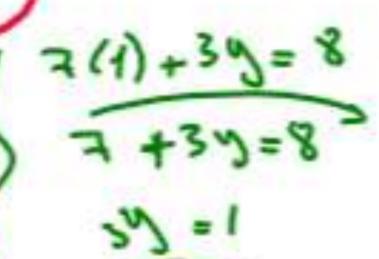
of a?

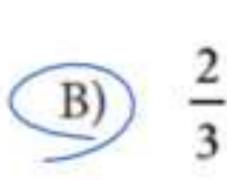
If $27^{81} = 3^x$, what is the value of x?

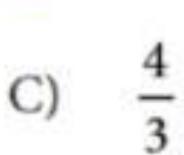
- B) 84
- C) 100 D) 243

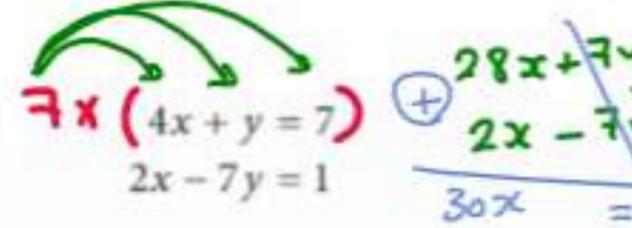

System of equations

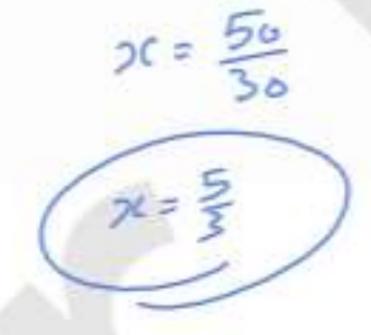



Θ

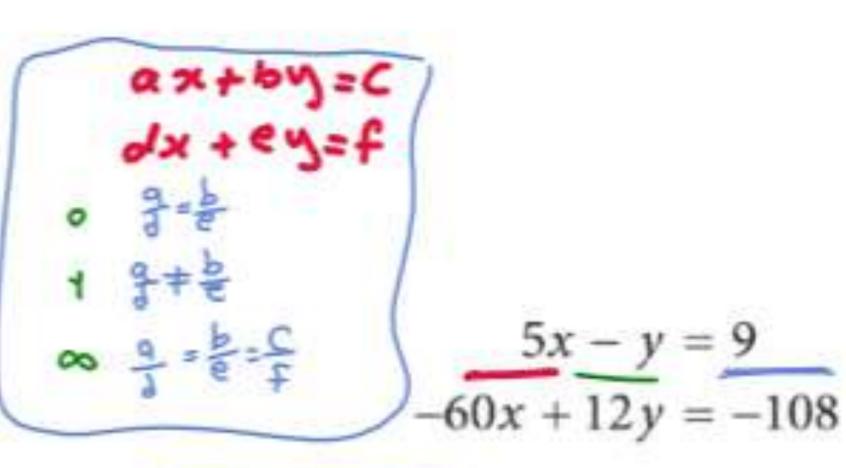



For the solution (x, y) to the system of equations above, what is the value of x - y?





D)
$$\frac{22}{3}$$


If (x, y) is the solution to the given system of equations, what is the value of x?

$$\bigoplus_{x + 2y = 10} x + 2y = 10$$

The solution to the given system of equations is (x, y). What is the value of 3x + y?

How many solutions does the given system of equations have?

- A) Zero
- Exactly one
- Exactly two Infinitely many

$$\frac{2x+3y=5}{4x+cy=8}$$

In the system of equations above, c is a constant. For what value of c will there be no solution (x, y) to the system of equations?

A farmer sold 108 pounds of produce that consisted of z pounds of zucchini and c pounds of cucumbers. The farmer sold the zucchini for \$1.69 per pound and the cucumbers for \$0.99 per pound and collected a total of \$150.32. Which of the following systems of equations can be used to find the number of pounds of zucchini that were sold?

$$z+c = 150.32$$

$$(B) \frac{z+c}{1.69z+0.99c} = 108$$

C)
$$z+c = 108$$

 $0.99z + 1.69c = 150.32$

$$z+c = 150.32$$

0.99z + 1.69c = 108